Non-degenerate bilinear alternating maps f:V×V→V, dim(V)=3, over an algebraically closed field
نویسندگان
چکیده
منابع مشابه
The Multiplicative Inverse Eigenvalue Problem over an Algebraically Closed Field
Let M be an n × n square matrix and let p(λ) be a monic polynomial of degree n. Let Z be a set of n × n matrices. The multiplicative inverse eigenvalue problem asks for the construction of a matrix Z ∈ Z such that the product matrix MZ has characteristic polynomial p(λ). In this paper we provide new necessary and sufficient conditions when Z is an affine variety over an algebraically closed field.
متن کاملMcKay correspondence over non algebraically closed fields
The classical McKay correspondence for finite subgroups G of SL(2,C) gives a bijection between isomorphism classes of nontrivial irreducible representations of G and irreducible components of the exceptional divisor in the minimal resolution of the quotient singularity A2C/G. Over non algebraically closed fields K there may exist representations irreducible over K which split over K. The same i...
متن کاملDecomposition of Homogeneous Polynomials over an Algebraically Closed Field
Let F be a homogeneous polynomial of degree d in m+ 1 variables defined over an algebraically closed field of characteristic zero and suppose that F belongs to the s-th secant varieties of the standard Veronese variety Xm,d ⊂ P( m+d d )−1 but that its minimal decomposition as sum of d-th powers of linear forms M1, . . . ,Mr is F = M 1 +· · ·+M r with r > s. We show that if s+r ≤ 2d+1 then such ...
متن کاملNoetherian algebras over algebraically closed fields
Let k be an uncountable algebraically closed field and let A be a countably generated left Noetherian k-algebra. Then we show that A⊗k K is left Noetherian for any field extension K of k. We conclude that all subfields of the quotient division algebra of a countably generated left Noetherian domain over k are finitely generated extensions of k. We give examples which show that A⊗k K need not re...
متن کاملIsomorphism Types of Commutative Algebras of Finite Rank over an Algebraically Closed Field
Let k be an algebraically closed field. We list the finitely many isomorphism types of rank n commutative k-algebras for n ≤ 6. There are infinitely many types for each n ≥ 7. All algebras are assumed to be commutative, associative, and with 1 (except briefly in Remark 1.1). We assume that k is an algebraically closed field, except in Section 2. By the rank of a k-algebra, we mean its dimension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2004
ISSN: 0024-3795
DOI: 10.1016/j.laa.2004.01.019